scholarly journals Synergistic induction of matrix metalloproteinase 1 by interleukin-1? and oncostatin M in human chondrocytes involves signal transducer and activator of transcription and activator protein 1 transcription factors via a novel mechanism

2001 ◽  
Vol 44 (10) ◽  
pp. 2296-2310 ◽  
Author(s):  
J. B. Catterall ◽  
S. Carr�re ◽  
P. J. T. Koshy ◽  
B. A. Degnan ◽  
W. D. Shingleton ◽  
...  
2011 ◽  
Vol 92 (11) ◽  
pp. 2608-2619 ◽  
Author(s):  
ZhengQiang Yuan ◽  
Elizabeth A. Gault ◽  
M. Saveria Campo ◽  
Lubna Nasir

Equine sarcoids represent the most common skin tumours in equids worldwide, characterized by extensive invasion and infiltration of lymphatics, rare regression and high recurrence after surgical intervention. Bovine papillomavirus type 1 (BPV-1) activity is necessary for the transformation phenotype of equine fibroblasts. Among the many changes induced by BPV-1, matrix metalloproteinase 1 (MMP-1) upregulation contributes to the invasiveness of equine fibroblasts. However, it is not yet known how BPV-1 proteins regulate equine MMP-1 expression. To elucidate this mechanism, the equine MMP-1 promoter was cloned and analysed. A putative activator protein-1 (AP-1)-binding site was demonstrated to be crucial for upregulated MMP-1 promoter activity by BPV-1. BPV-1 E6 and E7 proteins increased MMP-1 promoter activity, and inhibition of BPV-1 gene expression by small interfering RNA significantly reduced the promoter activity. c-Jun and Fra-1, two components of the AP-1 transcription factor complex, were overexpressed and activated by BPV-1 in equine fibroblasts. Finally, BPV-1 E5, E6 and E7 proteins increased MMP-1 mRNA and protein expression. In conclusion, the expression of MMP-1 can be enhanced by BPV-1 oncoproteins E6 and E7 through the AP-1 transcription factor and by E5 via an indirect mechanism. These findings shed light on the mechanism of BPV-1-mediated equine fibroblast infiltration and indicate that both BPV-1 oncoproteins and AP-1 could be potential targets for equine sarcoid therapy.


1997 ◽  
Vol 186 (2) ◽  
pp. 247-258 ◽  
Author(s):  
Michael Naumann ◽  
Silja Weßler ◽  
Cornelia Bartsch ◽  
Björn Wieland ◽  
Thomas F. Meyer

We have studied the effect of human bacterial pathogen Neisseria gonorrhoeae (Ngo) on the activation of nuclear factor (NF)-κB and the transcriptional activation of inflammatory cytokine genes upon infection of epithelial cells. During the course of infection, Ngo, the etiologic agent of gonorrhea, adheres to and penetrates mucosal epithelial cells. In vivo, localized gonococcal infections are often associated with a massive inflammatory response. We observed upregulation of several inflammatory cytokine messenger RNAs (mRNAs) and the release of the proteins in Ngo-infected epithelial cells. Moreover, infection with Ngo induced the formation of a NF-κB DNA–protein complex and, with a delay in time, the activation of activator protein 1, whereas basic leucine zipper transcription factors binding to the cAMP-responsive element or CAAT/enhancer-binding protein DNA-binding sites were not activated. In supershift assays using NF-κB–specific antibodies, we identified a NF-κB p50/p65 heterodimer. The NF-κB complex was formed within 10 min after infection and decreased 90 min after infection. Synthesis of tumor necrosis factor α and interluekin (IL)-1β occurred at later times and therefore did not account for NF-κB activation. An analysis of transiently transfected IL-6 promoter deletion constructs suggests that NF-κB plays a crucial role for the transcriptional activation of the IL-6 promoter upon Ngo infection. Inactivation of NF-κB conferred by the protease inhibitor N-tosyl-l-phenylalanine chloromethyl ketone inhibited mRNA upregulation of most, but not all, studied cyctokine genes. Activation of NF-κB and cytokine mRNA upregulation also occur in Ngo-infected epithelial cells that were treated with cytochalasin D, indicating an extracellular signaling induced before invasion.


Sign in / Sign up

Export Citation Format

Share Document